翻訳と辞書 |
Symbolic power of a prime ideal : ウィキペディア英語版 | Symbolic power of a prime ideal In algebra, given a ring ''R'' and a prime ideal ''P'' in it, the ''n''-th symbolic power of ''P'' is the ideal :〔Here, by abuse of notation, we write to mean the pre-image of ''I'' along the localization map .〕 It is the smallest ''P''-primary ideal containing the ''n''-th power ''P''''n''. Very roughly, it consists of functions with zeros of order ''n'' along the variety defined by ''P''. If ''R'' is Noetherian, then it is the ''P''-primary component in the primary decomposition of ''P''''n''. We have: and if ''P'' is a maximal ideal, then . == References ==
*http://www.math.lsa.umich.edu/~hochster/711F07/L09.07.pdf
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Symbolic power of a prime ideal」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|